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Abstract. Donald Trump linked COVID-19 to Chinese people on March
16, 2020, by calling it the Chinese virus. Using 59,337 US tweets related 
to COVID-19 and anti-Asian hate, we analyzed how Trump’s anti-Asian 
speech altered online hate speech content. Trump increased the preva-
lence of both anti-Asian hate speech and counterhate speech. In addition, 
there is a linkage between hate speech and misinformation. Both before 
and after Trump’s tweet, hate speech speakers shared misinformation 
regarding the role of the Chinese government in the origin and spread 
of COVID-19. However, this tendency was amplified in the post-Trump 
tweet period. The literature on misinformation and hate speech has been 
developed in parallel, yet misinformation and hate speech are often in-
terwoven in practice. This association may exist because biased people 
justify and defend their hate speech using misinformation. 

1 Introduction

On March 16, 2020, Donald Trump, then president of the United States, linked Asian 
Americans to COVID-19 by calling the virus the Chinese virus.1 As many studies have 
documented (Relia et al. 2019; Chan, Kim, and Leung 2021; Jeung and Nham 2020; 
Hswen et al. 2021; Lu and Sheng 2020; Gover, Harper, and Langton 2020; Roberto, 
Johnson, and Rauhaus 2020), the speech made “the Chinese virus” trend on social 
media and worsened the anti-Asian climate in the United States. In its first four weeks 
of operation, the Stop AAPI Hate website (Choi and Kulkarni 2020) received 1,497 anti-
Asian hate crime reports from March 19 to April 15, 2020. These incidents targeted not 
just Chinese but also Filipino, Thai, and Korean Americans (Jeung et al. 2021) because 
prejudiced Americans do not always distinguish these Asian subgroups (Le Espiritu 
1992).2 We ask the question of whether Trump’s characterization of COVID-19 as the 

1. Specifically, he used this language in a March 16 tweet that has since been deleted after his account was 
suspended, but the text can be seen here: https://www.theatlantic.com/notes/2020/03/2020-time-capsule-5-
the-chinese-virus/608260/. That same day, he also gave a speech detailing the federal government’s response 
to the pandemic, referred to the virus as “starting in China,” and described his own administration’s actions as 
making a “lifesaving move with early action on China.” Full transcript available here. 
2. A case in point is the murder of Vincent Chin, a Chinese American man beaten to death by two White men

in 1982. These White men were autoworkers who assumed that Chin was of Japanese descent and blamed 
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“Chinese virus” in association with laying blame on the Chinese government shifted the 
context of that phrase in online discourse. 

This article adds to this growing literature on anti-Asian bias during the COVID-19 pan-
demic by showing the connection between misinformation and hate speech behind 
the anti-Asian bias that appeared on Twitter. Specifically, we focus on how Trump’s 
anti-Asian speech altered online hate speech content, as measured by changing word 
vectors. By analyzing 59,337 tweets created by US users and related to COVID-19 and 
Asian hate (Ziems et al. 2020), we track the change in the content of anti-Asian hate 
speech and counterhate speech before and after Trump’s tweet. We find that Trump’s 
tweet coincided with an increase in hateful content. The vector representation of the 
phrase “Chinese virus” became more closely associated with criticisms of the Chinese 
government. Although the work on misinformation (e.g., Swire-Thompson and Lazer 
2019; Jerit and Zhao 2020; Gallotti et al. 2020; Kouzy et al. 2020) and hate speech has 
been conducted in isolation (e.g., Howard 2019; Coates 2020), we argue that in practice, 
these two forms of online speech are interwoven. This association may exist because 
biased people3 justify and defend their hate speech using misinformation. Despite a 
recognition that terms like “Chinese virus,” “Wuhan virus,” and “Kung Flu,” are racially 
problematic, their use in conjunction with misinformation suggests that misinformation 
may be used to deflect such criticisms. The rest of the article explains how hate speech 
speakers connect hate speech and misinformation. Next, we explain the data source 
and empirical strategies. We then present findings and discuss their implications and 
limitations. 

2 Misinformation and Hate Speech 

The COVID-19 virus is new, but anti-Asian attitudes in the United States are not. The 
history of discrimination against Asian communities runs deep in US history. For example, 
the US government banned Chinese immigration in the late nineteenth century (1882) 
and incarcerated Japanese people, including US-born citizens, during World War II (1942-
1946) (Kim 1999; Junn 2007; Ngai 2014; Nguyen, Carter, and Carter 2019). 

Nevertheless, history does not repeat itself in the same way. Compared to the late 
nineteenth and early twentieth centuries, attitudes toward Asian immigration and Asian 
American communities are now much more liberal (Skrentny 2009; Schickler 2016). In 
addition, the size of Asian populations in the US has increased substantially. Revealing 
explicit and outward bias toward Asian Americans, therefore, comes with political costs 
and social sanctions. 

Under these circumstances, biased people might be incentivized to justify and defend 
their anti-Asian hate speech by citing misinformation. To avoid the social sanctions 
associated with overt bias, individuals may suffer from a cognitive dissonance between 
needing to superficially uphold progressive social norms and justifying racially motivated 
biased attitudes and actions (Festinger 1957; Elliot and Devine 1994). Misinformation 
provides an alternative cognitive space for biased people, where their attitudes and 
actions can be justified. Thus, even though they are accused of xenophobia and racism, 
these biased people might not feel a strong sense of guilt or shame because they, and their 
group, believe they still hold the moral high ground (Kinder and Kam 2010). For instance, 
as we shall see, anti-Asian hate speakers justified calling COVID-19 the Chinese virus 

him for the decline of the US auto industry. At that time, Japanese automakers were becoming competitive in 
the US market. 
3. Biased people are defined as individuals who exhibit bias or animosity toward Asians or Asian Americans, 

as demonstrated by their hate speech content. 
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because they believed that Chinese government propaganda aimed to dissociate China 
from the virus. In their view, if people want to make China accountable for its accused 
misconduct, calling the virus the Chinese virus is preferable over calling it COVID-19. 
This is a conspiracy theory because it is impossible to falsify the claim (Harris 2018, 243). 
More importantly, the reason that health authorities recommend not connecting a virus 
to a particular region, nation, or people is beyond political; it is to avoid causing harm to 
innocent people, as evident in the rise of anti-Asian hate crimes. Yet, psychologically, this 
tactic is useful because it helps protect its users’ social identity and status by avoiding 
the accusation that they are motivated by hate or bias—they can instead use criticisms 
of the Chinese government to deflect this critique (Tajfel 1970; Tajfel and Turner 1979; 
Bail 2021; Kim et al. 2021). 

3 Hypotheses 

We draw two descriptive hypotheses from the earlier theoretical discussions. 

• H1: Trump’s tweet was associated with an uptick in both anti-Asian hate speech 
and counterhate speech. 

• H2: Both before and after Trump’s tweet, hate speech speakers shared misinfor-
mation regarding the role of the Chinese government in the origin and spread of 
COVID-19. However, this tendency was amplified in the post-Trump tweet period. 

4 Data 

We investigate how the public discourse on anti-Asian hate changed before and after 
Trump’s tweet. We looked for a large-scale Twitter dataset, where tweets are annotated 
as hate speech and counterhate speech. Using this criteria, we chose the COVID-HATE 
dataset, the largest Twitter dataset of anti-Asian hate and counterhate speech.4 Ziems 
et al. (2020) created this dataset by collecting over 30 million tweets from January 15 
through April 17, 2020.5 They automatically classified 891,204 hate tweets and 200,198 
counterhate tweets based on the hand-labeled dataset of 2, 400 tweets.6 These tweets 
were divided into hate speech, counterhate speech, neutral, and other categories.7 They 
used BERT (Bidirectional Encoder Representations from Transformers) embeddings for 
feature engineering and a logistic regression model as a classifier. The logistic regression 
model was selected after testing its performance against that of random forest and 
support vector machine classifiers. 

Our analysis has a geographical focus. For this reason, we limited the data to the 
geocoded tweets (n = 5, 109, 492).8 Ziems et al. (2020) identified these locations using 
either the OpenStreetAPI or the tweet users’ profile location. We used this sample to 
conduct descriptive analysis. For the word embedding analysis, we used the subset of 

4. For more information, see http://claws.cc.gatech.edu/covid. 
5. For this task, they used a collection of 42 keywords and hashtags related to COVID-19 (e.g., #coronavirus), 

hate speech (e.g., #chinavirus), and counterhate speech (e.g., #RacismIsVirus). 
6. These tweets were randomly sampled in multiple rounds. Ziems et al. (2020) intentionally oversampled 

tweets that include Asian, hate, and counterhate speech terms. 
7. In their definition, anti-Asian COVID-19 hate speech is COVID-19–related antagonistic speech that is 

directed towards Asians and is abusive and derogatory. Counterhate speech either opposes such comments 
or defends Asian communities. Neutral tweets are related to COVID-19 but do not contain such attitudes or 
information. 
8. The target dataset (dehydrated tweets) includes 6,548,324 tweet identifiers. Twenty-two percent of 

these tweets were unable to be extracted using the Twitter API on September 7, 2021, possibly due to the 
deletion of the original tweets. 

http://claws.cc.gatech.edu/covid
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tweets created in the US (n = 2, 337, 924) and classified either as hate or counterhate 
speech (n = 59, 337). 

5 Empirical Strategies 

To test hypotheses, we track changes in how the “Chinese virus” was discussed between 
groups (hate speech speakers and counterhate speech speakers) and over time (before 
and after Trump’s inflammatory speech). We start with descriptive statistics that explore 
these relationships. We then examine how the context of specific words changed. Word 
embedding is a suitable tool to perform this task because it is designed to estimate a 
linguistic context around a focal word by looking at its neighboring words (Firth 1957). 
In this study, we used a recent variant of the word embedding method called embedding 
regression that helps social science researchers make descriptive inferences (Rodriguez, 
Spirling, and Stewart 2021b). This method addresses a key problem with standard word 
embedding approaches: the focal words of interest to social scientists could be rare in 
the corpus they study. If so, the quality of the resulting representation will be far from 
ideal. Our case also falls into this category, as only four percent of the tweets in our 
data mention “Chinese virus.” This method resolves this problem by taking embeddings 
pretrained on large corpora (e.g., word2vec or Glove), then combining these with a small 
sample of example texts for a focal word and creating a new customized embedding 
for the focal word. Another strength of this framework is that it allows researchers to 
apply embedding to a multivariate regression framework. This feature is useful because 
many social science questions can be easily formulated in the regression framework. For 
instance, the above hypotheses could be formalized as estimating the coefficients (β1 

and β2) in the following regression model. Y represents contextual differences around 
a focal word, Group indicates hate speech or counterhate speech speakers, and Time 
points to the period before and after Trump’s inflammatory tweet. 

Y = β0 + β1Group + β2Time + error 

Using the embedding regression method, we estimated these betas by measuring the 
distance (the Euclidean norms) from the origin (the vector of all dimensions) to the 
coefficients. We also estimated the standard errors of these coefficients via a non-
parametric bootstrap. Using “text2vec” (Selivanov, Bickel, and Wang 2020) and “context” 
R packages (Rodriguez, Spirling, and Stewart 2021a), we trained our model based on 
Glove embeddings using 50 dimension,9 six window size, and ten minimum frequency of 
words. The tweets were preprocessed so that they did not include any non-alphabetical 
characters, words with only one or two letters, excessive white space, stopwords (based 
on the Snowball dictionary),10 and typical swear words (e.g., f***). We also removed 
HTML tags and URLs, and replaced contractions with short forms using the “textclean” R 
package (Rinker 2018). 

6 Results 

6.1 Growth in Asian Hate Speech and Counterhate Speech 

The COVID-HATE dataset shows that Trump’s anti-Asian tweet increased hate and coun-
terhate speech among the US Twitter users. To begin with, we plot the Twitter trends in 

9. The higher dimensions, such as 100, tend to overfit the data, so we settled on using 50 dimensions. 
10. For more information, see Porter (2001). 
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the days and weeks surrounding Trump’s tweet. Figure 1 shows that there was a sharp 
increase in the number of tweets mentioning phrases like “Chinese virus” immediately 
after Trump’s tweet. Interestingly, this change was driven by an increase not just in hate 
speech but also in counterhate speech (see Figure 1). We visualize this change in both 
standard and logged scales, with the former showing the dramatic uptick in tweets. Here 
we show that Trump’s actions increased hateful rhetoric toward Asian Americans and 
that other Twitter users responded. In short, Trump may have increased the instances 
of hate speech, but largely by centering himself in the existing discourse and amplifying 
the existing tension between hate and counterhate speakers. 
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Figure 1: Raw (top) and logged (bottom) frequency of hate and counterhate tweets over 
time for “Chinese virus.” 

Figure 2 shows a larger context that, in terms of the absolute volume, between the pre-
and post-Trump tweet periods the number of hate speech increased from 5,810 to 9,663, 
and that of counterhate speech increased from 20,761 to 23,103. Based on this metric, 
Trump’s anti-Asian speech backfired more than it garnered support. To make this point 
clearer, we calculate the relative increase and decrease of hate and counterhate speech 
tweets. The proportion of hate speech tweets decreased from 78% to 71%, whereas that 
of counterhate speech tweets increased 22% to 29% between the two periods. These 
differences are highly statistically detectable based on the two-tailed t-tests (p-value < 
0.01). 

6.2 Evolving Context 

Not only did the frequency of tweets discussing terms like “Chinese virus” increase in the 
days following Trump’s tweet, but so did the actual context surrounding them. Here, we 
analyze the variations in the contexts in which the term “Chinese virus” was discussed 
between groups and over time. We used word embedding to achieve this goal. The key 
insight with our word embedding regression is drawn from the adage that “you shall 
know a word by the company it keeps” (Firth 1957, 11). Word embedding techniques 
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Figure 2: Total tweet count change before and after Trump’s Chinese virus tweet. 

leverage this idea to produce vectors that represent particular words. If two vectors 
are close to one another, we can say that the two words are similar in that they share a 
similar context. 

Figure 3 demonstrates the idea of changing context following Trump’s tweet. We show 
an embedding regression that regresses the term “Chinese virus” on the group (hate 
and counterhate speech) and time (pre- and post-Trump tweet period) variables. The 
y-value shows the distances of the coefficients of the group and time variables. The error 
bars indicate the bootstrapped 95% confidence intervals. The “Hate label” coefficient is 
the average difference of the contexts between hate speech and counterhate speech 
speakers, controlling for the time variation. The “Trump tweet” coefficient is the average 
difference of the contexts between the two time periods, controlling for the speaker 
group variation. Because these point estimates involve slight sampling variance, we 
reran the same embedding regression model 1,000 times. We then calculated the mean 
and standard deviation of the ratios between the coefficients of the Trump tweet and 
those of the hate speech label. The result shows that, on average, the coefficient of the 
Trump tweet is 444% greater than that of the hate speech label. The standard deviation 
of these data points is 0.36. 

6.3 Contextual Hate and Counterhate Speech 

While the frequency of hate and counterhate speech both increased following Trump’s 
tweet (see Figure 2), the content changed in different ways. Specifically, we find that 
following Trump’s tweet, among hate speech speakers, vectors for words that could be 
associated with suspicion and animosity toward the Chinese government became closely 
associated with the vector for “Chinese virus.” In contrast, counterhate speakers’ tweets 
did not exhibit this same change in vector representations. We investigate our hypothesis 
that Trump’s tweet was associated with a shift in context from conspiracy theories about 
the origins of the virus toward placing blame on the Chinese government. 

Figure 4 provides more concrete information about these contextual changes. This figure 
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Figure 4: Top neighboring words. 
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contrasts the relatively close neighboring words (i.e., nearest neighbors) to “Chinese 
virus” between hate and counterhate speech speakers and tracks how this pattern 
changed over time. We estimate the distance between these neighboring words and the 
focal word using bootstrapping. Then, we rank the neighboring words based on their 
average cosine similarities. The error bars indicate their bootstrapped 95% confidence 
intervals. 

Figure 4 illustrates how the two sides engaged with each other. In the pre-Trump tweet 
period (left panel), hate speech speakers attacked the liberal media (e.g., MSNBC and 
CNN) when they mentioned the Chinese virus, whereas counterhate speakers criticized 
these hate speech speakers’ blatant racism. Here, it is important to note that the “ma-
chine” that appears in the left panel indicates the Chinese propaganda machine. Hate 
speech speakers were likely aware that “Chinese virus” is a racially charged term. Never-
theless, they insisted on using the term because dissociating China from the virus is the 
goal of Chinese propaganda. For instance, in response to MSNBC’s political commen-
tator Chris Hayes, Twitter user @Cryptominerz posted the following tweet on March 8, 
2020: 

Every news agency in the world was calling it the Wuhan Virus until the Chinese 
government propaganda machine kicked in to disassociate itself from being 
the origin of the virus. And the liberal media ate it right up. 

The same figure also illustrates how Trump’s anti-Asian tweet divided his supporters and 
critics further. In the right panel (the post-Trump tweet period), we can see that hate 
speech speakers amplified Trump’s tweet by trending hashtags similar to the Chinese 
virus, such as #chinavirus, #wuhancoronavirus, #wuhanvirus, #chinesewuhanvirus, 
#kungflu, #chineseviruscorona, and #ccpvirus (CCP stands for the Chinese Commu-
nist Party). If the implications of these terms were rather implicit, hashtags like #chi-
naliedpeopledied sent a more direct message to the audience. For hate speech speak-
ers, the hashtag #chinaliedpeopledied became their rallying cry. Counterhate speech 
speakers accused these hate speech speakers of racism and xenophobia. Twitter user 
@LeslieCackles criticized Trump’s speech on March 24, 2020: 

Calling it the Chinese virus is causing people to not eat Chinese food from 
restaurants and causing even more racism than is already happening in this 
country. Even if it did start in China it doesn’t mean they are bad people. They 
are wonderful and dying too! 

When accusations of racism happened, hate speech speakers accused the counterhate 
speech speakers as China sympathizers, because, in the minds of hate speech speakers, 
China must pay for the virus, which they started and covered up. Once again, here one can 
see that these individuals argued that disassociating China from the virus is a goal of the 
Chinese government’s propaganda. Twitter user @SundevilSal pushed back against the 
counterhate speech by commenting that “anyone says the #WuhanVirus did not come 
from China and tells you not to call it that is a Chinese communist sympathizer.” 

7 Conclusion 

This article examines how misinformation and hate speech are linked using the case 
of anti-Asian hate speech during the COVID-19 pandemic. The linkage between misin-
formation and hate speech is crucial for effective online content moderation. If users 
defend their hate speech based on misinformation, we cannot effectively reduce hate 
speech without addressing misinformation. 

Designing interventions that can tackle these two problems simultaneously requires a 
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deeper and more precise understanding of the relationship between information and 
hate speech at the behavioral level. As our study is based on observational data and 
provides only descriptive inferential evidence, experimental research could be useful to 
disentangle the relationship between these two variables. For instance, future studies 
can investigate this by experimentally testing whether the effect of counterhate speech 
on moderating hate speech is reduced when hate speech speakers are exposed to 
misinformation. This experimental test is a useful next step, as our study is based on 
observational data and provides only descriptive inferential evidence. 
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